辊道窑温度分布式智能控制系统的研究及应用
时间:2014-04-10来源:湖南新天力
1、辊道窑温度分布式控制系统的组成及原理
该系统由上位机与下位机两大部分组成,上位机与下位机通过RS-485通讯协议完成信息的传递,上位机由586微机加RS232C/RS485转换器构成,位于集中控制室,完成向下位机(现场控制器)发送命令、接收现场控制器数据及数据分析、存储、报表打印、显示等功能。下位机由现场温度智能控制器、温度传感器,电动比例调节阀等组成,主要完成对辊道窑炉各点温度的测量、控制及向上位机发送有关数据等。6个控制器通过电动比例调节阀调整喷油量达到分别控制窑炉内6点温度,从而保证窑炉烧成带温度的恒定,该系统特别适合于象辊道窑这样的小规模DCS系统。

2、智能温度控制器的设计

2.1概述
常规PID控制器由于具有原理简单,稳定性好,易于实现等优点,因而在过程控制中得到广泛应用,但在辊道窑温度控制系统中,常规PID控制器也暴露出其局限性。首先常规PID控制器的设计是基于对象的数学模型,而辊道窑炉难以用数学表达式描述,故系统达不到预期的控制品质。其次当辊道窑的工况发生变化时(例如,油压波动,油的品质变化时),在某一工况下整定的PID参数不能满足性能指标要求。为此,在PID控制器设计时,首先采用基于继电反馈的整定方法,确定PID调节器参数,再对PID参数实行实时Fuzzy校正,使其具有自适应功能,从而满足系统变工况的要求。

2.2温控器的控制策略
2.2.1PID参数自整定
根据继电振荡原理,继电反馈系统框图如图1所示。若继电器输出幅度为b,则根据非线性理论,继电器的描述函数为,其中误差信号的幅度为不断调整继电特性的幅值,使系统发生自振荡,然后测取振荡周期与幅度,便可得出临界增益与临界周期。利用这两个参数,根据Ziegler-Nichols方法,可得出PID参数,PID参数整定完毕后,此参数作为PID控制器Fuzzy校正的初值,并自动转入PID参数Fuzzy校正控制。一般在系统初次投入时整定,并把整定值存入EEPROM中。
其中Kp为比例系数;Ti为积分时间常数;Td为微分时间常数。
2.2.2PID参数实时Fuzzy校正
根据上述自整定得出的PID参数,当辊道窑炉参数或工况发生变化时,系统的性能将下降,甚至无法满足工艺要求,所以必须对PID参数进行在线调整。目前较多地采用自校正PID算法,但这种方法是基于被控对象精确的数学模型,为此,我们采用模糊控制技术,根据系统运行过程中的偏差绝对值及偏差的积累绝对值,对PID参数进行实时校正,当参数或工况发生变化时,逐步调整值,使系统控制性能处于最优状态。的修正规则如下: (1)比例系数增大,系统响应速度加快,稳态误差减小,因此在偏差大的情况下,要增大值。但是过大会使系统产生超调,甚至不稳定,因此在偏差小的情况下,要减小值。将偏差绝对值的模糊子集取为很大(VB)、大(B)、中(M)、小(S)和很小(VS),的模糊子集取为PB、PS、O、NS、NB,则的修正量的Fuzzy控制规则如表1所示。其中,的基本论域为[0,10],分为11个量化等级,即={0,1,2,3,4,5,6,7,8,9,10},的基本论域为[-0.5,+0.5],分为11个等级即={-0.5,-0.4,-0.3,-0.2,-0.1,0,0.1,0.2,0.3,0.4,0.5}。
(2)在PID控制器中,积分作用是为了消除稳态误差,加强积分作用(减小)有利于减小稳态误差,但过强的积分作用会引起积分饱和,使系统超调加大,甚至引起振荡。因此,在调节过程中的初期,即误差的积累较小时,应减弱积分的作用(加大)。而在调节过程的后期,即误差累积较大时,应加强积分作用(减小)。将误差累积绝对值的模糊子集取为VB、B、M、S和VS,的模糊子集取为PB、PS、O、NS、NB,则的修正量的Fuzzy控制规则如表2所示。其中,的基本论域为[0,10],分为11个量化等级,即={0,1,2,3,4,5,6,7,8,9,10},的基本论域为[-5,+5],分为11个量化等级即={-5,-4,-3,-2,-1,0,1,2,3,4,5}。
(3)微分在PID控制中的作用主要是改善系统的动态性能,控制超调。对于变工况且不确定系统,在调节过程的初期,即误差的累积绝对值较小时,应加强微分的作用(即增大),而在调节过程的后期,即误差累积的绝对值较大时,应减弱微分的作用(即减小),将的模糊子集取为PB、PS、O、NS、NB,则的修正量的Fuzzy控制规则如表2所示。其中,的的基本论域为[-1,1],分为11个量化等级即={-1,-0.8,-0.6,-0.4,-0.2,0,0.2,0.4,0.6,0.8,1}。
智能温度控制系统结构图如图2所示,当要整定参数时把开关打在T,参数整定完毕,切换到自动位置A,参数自调整控制器对控制对象进行调节。